If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-12=0
a = 2; b = 24; c = -12;
Δ = b2-4ac
Δ = 242-4·2·(-12)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{42}}{2*2}=\frac{-24-4\sqrt{42}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{42}}{2*2}=\frac{-24+4\sqrt{42}}{4} $
| 8(d-77)=88 | | -28–2m=-20 | | 20/x=2.5/6 | | 2(-2x+7)=7(x=4) | | 4b+3=-7b+80 | | 3(5a+4)-1=12a+14 | | -104=-8(1-3x) | | 1/6w=12 | | 7/4/14=x/32 | | k−13=–5 | | 5(-2n-2)=(-60) | | 10+7x=≤5x-1 | | –2w+–8=2 | | 120+65n=95n | | x+25=84 | | 12=t-13 | | 2x-19=x+49 | | y-13=48 | | −2(x−5)=6(2−12x) | | 5n+16=2n+38 | | X+x(0.06)=50 | | -3(4+5x)=-132 | | –4=y4− 8 | | 2x-5=x+43 | | 45-3h=2(h+5) | | –2=r−3–3 | | -22=x-56.3 | | 7t+8-3=-28 | | 28=6(x+4)-8x | | 2u-65=u+39 | | 3(6+3x)-5x=10 | | g/5+11=23 |